Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway
نویسندگان
چکیده
Krüppel-like factor 4 (KLF4) is a transcription factor and functions as a tumor suppressor or tumor promoter in different cancer types. KLF4 regulates many gene expression, thus affects the process of cell proliferation, differentiation, and apoptosis. Recently, KLF4 was reported to induce senescence during the generation of induced pluripotent stem (iPS) cells, but the exact mechanism is still unclear. In this study, we constructed two doxycycline-inducing KLF4 cell models, and demonstrated overexpression of KLF4 could promote cell senescence, detected by senescence-associated β-galactosidase activity assay. Then we confirmed that p21, a key effector of senescence, was directly induced by KLF4. KLF4 could also inhibit survivin, which could indirectly induce p21. By miRNA microarray, we found a series of miRNAs regulated by KLF4 and involved in senescence. We demonstrated that KLF4 could upregulate miR-203, and miR-203 contributed to senescence through miR-203-survivin-p21 pathway. Our results suggest that KLF4 could promote cell senescence through a complex network: miR-203, survivin, and p21, which were all regulated by overexpression of KLF4 and contributed to cell senescence.
منابع مشابه
Deregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets.
Acute myeloid leukemia (AML) is characterized by increased proliferation and blocked differentiation of hematopoietic progenitors mediated, in part, by altered myeloid transcription factor expression. Decreased Krüppel-like factor 4 (KLF4) expression has been observed in AML, but how decreased KLF4 contributes to AML pathogenesis is largely unknown. We demonstrate decreased KLF4 expression in A...
متن کاملMicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway.
Up to now, the molecular mechanisms underlying the stemness of prostate cancer stem cells (PCSCs) are still poorly understood. In this study, we demonstrated that microRNA-7 (miR-7) appears to be a novel tumor-suppressor miRNA, which abrogates the stemness of PCSCs and inhibits prostate tumorigenesis by suppressing a key stemness factor KLF4. MicroRNA-7 is down-regulated in prostate cancer cell...
متن کاملMicroRNA-18a promotes proliferation and metastasis in hepatocellular carcinoma via targeting KLF4
MicroRNAs (miRNAs) are short, non-coding and endogenous RNAs that played as important roles in the proliferation and metastasis of tumors. In this study, we determined the role of miR-18a in the regulation of HCC cell motility. We showed that miR-18a expression was upregulated in human HCC tissues and cell lines. Moreover, Elevated expression of miR-18a promoted the HCC cell proliferation and m...
متن کاملSurvivin regulates hematopoietic progenitor cell proliferation through p21WAF1/Cip1-dependent and -independent pathways.
The cyclin-dependent kinase inhibitor p21WAF1/Cip1 and Survivin enhance granulocyte macrophage colony-forming unit (CFU-GM) cell cycle and proliferation and have been implicated as antiapoptotic proteins. We investigated the relationships between p21 and Survivin in primary CFU-GM and c-kit+, lineage-negative (Lin-) cells and demonstrate p21-dependent and -independent pathways whereby Survivin ...
متن کاملCirculating microRNA-194 regulates human melanoma cells via PI3K/AKT/FoxO3a and p53/p21 signaling pathway
In the present study, we analyzed the role of microRNA-194 circulating regulated human melanoma cell growth. We found that microRNA-194 expression was markedly suppressed in human melanoma patients, compared with negative control group. Next, disease-free survival (DFS) and overall survival (OS) of high expression in human melanoma patients was higher than those of low expression in human melan...
متن کامل